West Park Academy
 Calculation Guidance

Addition

> addend + addend = sum

Key vocabulary to be used from Year 1.

Year 1

Read, write and interpret mathematical statements involving addition (+), subtraction (-), and equals (=) signs
Represent and use number bonds and related subtraction facts within 20.
Add and subtract one digit and two digit numbers to 20 , including 0 .

Number bonds and fact families

Add by making 10

Year 2

Add and subtract numbers using concrete objects, pictorial representations, and mentally, including:

- A two-digit number and ones
- A two-digit number and tens
- Two two-digit numbers
- Adding three one-digit numbers

Two-digit number add ones (not bridging)

Concrete	Pictorial	Abstract
Children will use the tens/ones frame and concrete resources to add ones.	Children can then use simple drawing to support with their working out.	Children to then work with abstract. Children will be encouraged to spot friendly facts that can support them with their learning.
Stem sentence - We can just add the		
ones.		

Concrete
Children will use the tens/ones frame and

This can also be shown using tens frames.

Pictorial
Children can then use simple drawing to support with their working out.

This can also be shown using number lines.

Abstract
Children to continue to work with tens/ones frames but use numbers.

$19+5=24$

Adding 2 two digit numbers (1)

Adding 2 two digit numbers (2)

Concrete concrete resources to add two digit numbers. Children to not regroup at this point.

Pictorial
Children can then use simple drawing to support with their working out.

Abstract
Children to continue to work with tens/ones frames but use numbers.

dsameso		6
$\because: \because: \because$	$\begin{aligned} & (\mathrm{Q}+(\mathbb{4}+5=15 \\ & 10 \end{aligned}$	$6+4+5=15$
1		
$\because \because$		

Year 4

Add numbers with up to 4 digits using the formal written method of column addition.
Year 5
Add whole numbers with more than 4 digits, including using formal written method (column addition)
Year 6
Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Column addition

Concrete	Pictorial	Abstract
Children to recap learning in year 3 (see year 3). Dienes used to highlight exchange. Concrete to be used more in year 4 but years 5 and 6 can use if needed to recap.	Children should be able to work out answers/ prove answers are correct using simple pictures with up to 3 digits (see year 3). All children in years 4, 5 and 6 should be confident in using simple pictures.	Children will use the method of column addition and have a good understanding of how and why the method is effective. They will be able to work with numbers with any number of digits.

Subtraction

minuend - subtrahend $=$ difference
Key vocabulary to be used from Year 1.

Year 1
Read, write and interpret mathematical statements involving addition (+), subtraction (-), and equals (=) signs
Represent and use number bonds and related subtraction facts within 20.
Add and subtract one digit and two digit numbers to 20 , including 0 .

Taking away		
Concrete	Pictorial	Abstract
Use concrete materials and stories to show objects being taken away. At first there were \qquad birds. Then \qquad flew away. Now there are \qquad .	Children can show objects being taken away by crossing out.	$8-3=5$

| Fact families | | |
| :--- | :--- | :--- | :--- |
| Concrete | | |

Crossing 10		
Concrete	Pictorial	Abstract
Start with 13. Take away 3 counters to make 10. Then take away another 2 counters to take away 5 in total.	Start with 13. Take away 3 counters to make 10 . Then take away another 4 counters to take away 7 in total.	$13-7=6$ How many to we take off to make 10? How many more do we need to take away?

Add and subtract numbers using concrete objects, pictorial representations, and mentally, including:

- A two-digit number and ones
- A two-digit number and tens
- Two two-digit numbers
- Adding three one-digit numbers

Two digit number subtract ones (no regrouping)

Concrete	Pictorial	Abstract
Children will use the tens/ones frame and concrete resources to subtract ones.	Children can then use simple drawing to support with their working out.	Children to then work with abstract. Children will be encouraged to spot friendly facts that can support them with their learning.

$$
\begin{aligned}
17-3 & =14 \\
7-3 & =4 \\
17-3 & =14
\end{aligned}
$$

Stem sentence - We just subtract the ones.

Two digit number subtract ones (regrouping)

This can also be shown using tens frames.

Subtract the 3 to make 20 . Then subtract the remaining 4 to make 16.

Pictorial
Children can then use simple drawing to support with their working out.

Abstract

Two digit number subtract tens

Two digit number subtract two digit number (no regrouping)

Two digit number subtract two digit number (regrouping)

Concrete	Pictorial	Abstract
Children will use the tens/ones frame and concrete resources to subtract two digit number	Children can then use simple drawing to support with their working out.	Children to continue to work with tens/ones frames but use numbers.

numbers.

In the example above, children need to regroup first.

Year 4

Subtract numbers with up to 4 digits using the formal written method of column subtraction.

Year 5

Subtract whole numbers with more than 4 digits, including using formal written method (column subtraction).

Year 6

Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.
Concrete year 3). Dienes used to highlight exchange. Concrete is used more in year 4 but years 5 and 6 can use if needed to recap.

Pictorial

Children should be able to work out answers/ prove answers are correct using simple pictures up to 3 digits (see year 3). All children in years 4,5 and 6 should be confident in using simple pictures.
Abstract

Children to use the method of column subtraction and have a good understanding of how and why the method is effective. They will be able to work with numbers with any number of digits.

Multiplication

factor x factor $=$ product

Key vocabulary to be used from Year 2.

Year 1
Solve simple one step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.
Year 2
Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals (=) signs
Show that multiplications of two numbers can be done in any order (commutative) and division of one number by another cannot
Making and adding equal groups

Year 3

Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to efficient written methods

Short multiplication 2 digit by 1 digit (extended version)

Concrete \quad Pictorial
Children to use dienes to find answers to multiplication involving 2 digit by 1 digit.
$3 \times 34=$

Pictorial
Children can use simple pictures to find the answer.

Children can use simple pictures to find the answer.

Abstract

Children to begin by partitioning number into tens and ones, multiplying them separately and then adding answers together.

Stem sentences:
First multiply the ones.
Then multiply the tens. Finally add answers.

When children are confident with this they are then to look at layout of column. Children to use extended version in year 3.

Multiply two-digit and three-digit numbers by a one-digit number using formal written layout

Year 5
Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
Year 6
Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the efficient written method of long multiplication

Division

dividend \div divisor $=$ quotient
Key vocabulary to be used from Year 2.

Year 1

Solve simple one step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.
Year 2
Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals (=) signs
Show that multiplications of two numbers can be done in any order (commutative) and division of one number by another cannot

Sharing objects equally					
Concrete	Pictorial				Abstract
Children to physically share objects into equal groups.	Children to use pictorial methods to share into equal groups. Bar model to be used more in Year 2.				6 shared equally between 2 is 3.
					Year 2 Children to show this using division with key vocabulary. Children to understand division can't be done in any order like multiplication. $6 \div 2=3$
Bar model to be used more in Year 2.	3	33	3	3	

Year 3
Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to efficient written methods

Divide 2 digits by 1 digit

Year 4
Divide two-digit and three-digit numbers by a one-digit number using formal written layout.
Short division (Divide 2/3 digits by $\mathbf{1}$ digit)

Year 5

Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context Year 6
Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

Short division

Concrete	Pictorial	Abstract
Children to recap learning from year 4 (see year 4 example).	Children to recap learning from year 4 (see year 4 example). Children should be confident in years 5 and 6 using simple pictures to answer calculations.	Children will using short division to complete calculations with up to 4 digits.
		Year 6 will use short division to also divide by 2 digits.
		1233624

